Problem 11

Evaluate $\left(\log _{2} 3\right)\left(\log _{3} 4\right)\left(\log _{4} 5\right) \cdots\left(\log _{31} 32\right)$.

Solution

In order to evaluate this product, write the logarithms so that they all have a common base. Consider one of these factors in general and set it equal to x.

$$
\begin{gathered}
\log _{n}(n+1)=x \\
n^{x}=n+1 \\
\log _{2} n^{x}=\log _{2}(n+1) \\
x \log _{2} n=\log _{2}(n+1) \\
x=\frac{\log _{2}(n+1)}{\log _{2} n}
\end{gathered}
$$

As a result,

$$
\log _{n}(n+1)=\frac{\log _{2}(n+1)}{\log _{2} n}
$$

which means

$$
\begin{aligned}
\left(\log _{2} 3\right)\left(\log _{3} 4\right)\left(\log _{4} 5\right) \cdots\left(\log _{30} 31\right)\left(\log _{31} 32\right) & =\left(\frac{\log _{2} 3}{\log _{2} 2}\right)\left(\frac{\log _{2} 4}{\log _{2} 3}\right)\left(\frac{\log _{2} 5}{\log _{2} 4}\right) \cdots\left(\frac{\log _{2} 3 I}{\log _{2} 30}\right)\left(\frac{\log _{2} 32}{\log _{2} 3 I}\right) \\
& =\frac{\log _{2} 32}{\log _{2} 2} \\
& =\frac{5}{1} \\
& =5 .
\end{aligned}
$$

